Is AI our last hope? Let’s pump the breaks. One of the inherent problems with an industry such as AI and ML is the struggle between reality vs fantasy. Between what it is and what it could be.

Throughout the years, there have been many promises of the next big advent in modern technology. As such, industries have poured billions into them. If it isn’t AI and ML, it’s cloud. If it isn’t cloud, it’s “Big Data.”

The problem is that the gap between what is promised and what is delivered is often wider than we care to admit. Take Big Data as an example. Big Data was probably the “last new hope” which burst onto the scene. Massively.

We Spent Billions On It

And continue to do so! By some accounts, the Big Data industry is worth somewhere around $100 billion. That might actually be a conservative estimate but it’s a round number for us to work with.

If big data is worth $100 billion a year, we would estimate that about 40% of that is in professional services. Despite the intense focus and investment, it might shock you to learn how many fail. According to some statistics, roughly 85% of all Big Data projects are disappointing.

Any way you slice it, that’s a lot of money. So, is AI our last hope? Let’s remember previous “last hopes” and big promises.

But Isn’t Failure Part of the Risk?

It’s true that most companies started today will fail. AI, ML, and Big Data are not immune to the same market forces which determine which streaming video app will rise above the rest or which subscription box service will reign supreme.

In any space, there are failures. A lot of them. And it’s true that they’re not always bad. There can be value in failure. Knowledge can be gained. Processes can be altered. As Thomas Edison is often quoted:

“I haven’t failed. I’ve just found 10,000 ways that won’t work.”

-Thomas Edison, maybe.

The above sentiment works great on a coffee mug or t-shirt. In the real world there is little joy to be had in a $20 billion failure.

The problem as it pertains to Big Data is that much of it could have been avoided. What we saw with the influx of Big Data is essentially this: A commercially influenced campaign which had massive impact on how business decisions were being made.

So Big Data Is Bad?

Far from it. Big Data is fantastic, given the right application. However, it’s true meteoric rise was due in large part to two factors:

The cost of hard drive storage from the days of when we first knew what a hard drive was to today is massive. It would be almost impossible to overstate how cheap it is to store data now. From thousands of dollars per MB in the late 1950’s; to fractions of a cent today.

Enter Big Data and mix in a fair amount of commercial pressure, i.e. “Are you getting the most out of your data?” And you have a $100 billion industry that is exploding with promises of what could be.

“Don’t you want to do more with your data? In the modern age, it’s cheap to obtain, cheaper to store, and we can analyze it and develop all sorts of profitable initiatives with it.”

What do you get when you tell million-dollar corporations that there’s more money to be made here and that the cost associated with unlocking that potential is low?

You get an almost overnight $100 billion industry.

Which again, is not to understate the value of Big Data. Given its proper application, Big Data can be all of those things. It’s just not all of those things to all users. And at worst, it’s a false promise based on commercialized pressure to be a part of the next big thing.

Is AI Our Last Hope?

Hardly. One of the advantages AI and ML have over the Big Data conundrum is there is a lot more opportunity to identify solutions that can be realistically implemented. Those solutions can have real, noticeable impact.

That said, the notion of all of these concepts; AI, ML, Big Data, etc as offering limitless value or being the saviors of society, humanity, or simply just business is overblown. We would argue that positioning these technologies in this way is a fundamentally flawed position.

Rather than wondering if AI will be the savior, we see it a bit differently. It’s more of a rush to provide an answer to Big Data’s failure to live up to its promises as the last big savior.

Consider The Gold Rush

This irrational hope that there’s limitless possibilities and capabilities for AI and ML are flawed. We would compare it to the mentality of a Gold Rush. That is, thousands of people flocking to the promise of something amazing. What’s more, thousands of people who had no interest in prospecting feeling pressure to get in on the action for fear of missing out.

We know what happened there. The vast majority didn’t strike it rich. The majority of people who did strike it rich, did not do so by finding gold. Rather, they sold tools, lodging, supplies, and other ancillary accessories to those looking to strike it rich.

It would be lazy to make a reference to fool’s gold at this point. However, it should be stressed that AI, ML, and Big Data are not inherently fool’s gold. Nor is actual gold.

However, the false promises and hyper-commercial pressure to make these systems into something they’re not can sometimes make it feel that way.

There is immense social and commercial pressure to chase the shiny object. Whether that’s gold or Big Data, or even AI. However, we should have an ethical standard for how quickly we react to such impulses.

As new technologies and processes come into use, there will be continued pressure to adopt them. From a pragmatic standpoint, we should resist the urge to adopt for the sake of adoption. Rather, we should focus on the practical applications of these tools and how they can best serve both our personal and business needs.

What Does That Mean For AI?

Big Data, while useful, truly failed to deliver on their lofty promises. Never-ending storage, widespread practical application, immeasurable profit-generating analysis, the list goes on.

To avoid falling into the same pitfall, it should be noted that both AI and ML have already achieved some of these goals in various applications. And they will continue to innovate and explore.

AI and ML will likely bring about a massive disruption to one, or more industries. However, knowing precisely where, when, or how that will take shape is difficult to predict.

For now, those of us in this space should take up an ethical mantra not to over-hype, oversell, and under-deliver. There are enough amazing possibilities with these technologies that we don’t have to promise the world.

Is AI our last hope? Probably not. It’s just the latest one. But in order to have true, ground-breaking, and even disruptive force; it doesn’t have to be the end all, be all of technological innovation.

It just has to work. And more importantly, work for what you need it to do.

Originally published at on May 14, 2019.

Source: Artificial Intelligence on Medium